Окисляется ли алюминий

Содержание

Окисление алюминия при переплаве алюминиевого лома

Окисляется ли алюминий

Алюминий имеет отрицательный окислительно-восстановительный потенциал (–1,66 В), а магний, его важный легирующий элемент, имеет даже более низкий потенциал (–2,38 В).

Поэтому, как и большинство других металлов, алюминий встречается в природе только как очень стабильный оксид. Химически это означает наиболее стабильное состояние на самом низком энергетическом уровне.

При электролизе металл вынуждают отделиться от кислорода путем подъема его энергетического потенциала. При контакте с кислородом алюминий стремится вернуться к более низкому энергетическому уровню в виде оксида алюминия.

Из-за его высокого сродства к кислороду эта реакция происходит мгновенно.

Реакция окисления алюминия

Реакция окисления алюминия следует реакции

4Al + 3O2 —› 2Al2O3

Положительное изменение энтальпии ΔH этой реакции указывает на то, что окисление алюминия является экзотермическим процессом, то есть идет с выделением энергии. Это логично, так как алюминий при этом переходит в состояние с более низким энергетическим уровнем.

Толщина оксидной пленки на твердом алюминии

Толщина естественной оксидной пленки довольно тонкая – от 1 до 3 нм в зависимости от сплава и температуре образования оксида (до 300 °С).

На рисунке 1 показано постепенное увеличение толщины оксидной пленки на чистом алюминии при ее образовании при температуре от комнатной до 400-500 °С.

Затем происходит разрыв в скорости окисления и резкое увеличение толщины оксидной пленки до 20 нм. Причиной этого считается переход от аморфной структуры оксида алюминия к его кристаллической структуре.

Именно поэтому при сушке измельченного алюминиевого лома и обжиге с него органических покрытий его не нагревают выше 400 °, чтобы избежать чрезмерного окисления.

Рисунок 1

В твердом состоянии алюминия оксид алюминия играет положительную роль, так как оксидная пленка имеет форму γ-Al2O3 и толщину несколько нанометров.

Она надежно изолирует поверхность алюминия и останавливает дальнейшее окисление.

При постоянной температуре толщина оксидной пленки растет сначала очень быстро, но затем скорость роста замедляется и сводится практически к нулю.

Окисление алюминиевой стружки

С особенностью роста оксидной пленки, которая показана на рисунке 1, связан интересный феномен. Он происходит при хранении алюминиевых отходов в виде стружки.

Этот вид алюминиевого лома возникает при механической обработке алюминия и поступает на переплав в основном в виде токарной и сверлильной стружки.

Эта стружка имеет после механической обработке свежую, чистую поверхность, которая сразу же начинает окисляться.

Так как стружка перед переплавом хранится в прессованных пакетах, то, казалось бы, окисляться должен только наружный их слой, а внутренние слои пакета сохраняться без окисления.

Однако по изменению веса пакета было установлено, что окисление его в целом продолжается в течение длительного времени.

Причина этого в том, что в пакете есть щели и полости, через которые воздух медленно, но уверено проникает во внутренние  его слои. Большинство отдельных стружек очень тонкие, и оксидный слой, хотя и еще более тонкий, дает значительную долю в общем весе пакета. Поэтому при длительном хранении стружки потери металла возникают просто ниоткуда. Вывод из этого может быть только один – стружку необходимо переплавлять немедленно после ее поступления.          

Удельная поверхность алюминиевого лома

Потеря алюминия из-за его окисления при переплаве в печи какой-нибудь загрузки лома пропорциональна удельной площади этого лома. Удельная площадь выражается соотношением

ауд = m/A,

 где m – общая масса партии лома, A – общая площадь поверхности всех кусочков лома, составляющих эту загрузку.

Удельная площадь поверхности алюминиевых отходов является критическим параметром. Ее величина увеличивается с уменьшением размеров частиц лома.

Так, у куба со стороной 10 см площадь поверхности равна 600 кв. см, а у эквивалентных по массе 1000 кубиков со стороной 1 см – в 10 раз больше.

Поэтому скорость окисления этих кубиков будет в 10 раз больше, чем большого куба.

 Оксидная пленка на жидком алюминии

За исключением операций сушки и обжига органических покрытий все окисление алюминиевого лома происходит в жидком состоянии.

В ходе плавления защитная оксидная пленка разрушается, и окисление алюминия начинается снова, но уже  при более высокой температуре.

На невозмущенной поверхности расплава алюминия устанавливается стабильная  оксидная пленка, толщина которой медленно увеличивается во времени.

Зависимость интенсивности окисления жидкого алюминия от температуры

С ростом температуры расплава скорость окисления алюминия возрастает.

Она довольно медленно возрастает вплоть до интервала температуры от 760 до 780 °С, а затем следует резкое увеличение скорости окисления, как это показано на рисунке 2.

Нагрев алюминиевого расплава выше этих температур приводит к повышенным потерям алюминия от его окисления. Эти потери часто называют «угар алюминия». 

Рисунок 2

Оптимальная температура для расплава алюминия

С учетом резкого роста окисления алюминия при температуре расплава выше 760-780 °С, если нет особых причин для высокой температуры расплава (например, большая длина передающих металлопроводов), жидкий алюминий разогревают как раз до температуры, которая оптимальна для его разливки. В большинстве случаев эта температура составляет от 730 до 750 °С.   

Источник: Ch. Schmitz, Handbook of Aluminium Recycling, 2006. 

Источник: http://aluminium-guide.ru/okislenie-alyuminiya-pri-pereplave-alyuminievogo-loma/

Коррозия алюминия

Напомним, что коррозией называется процесс разрушения металлов и их сплавов в результате химического или электрохимического воздействия окружающей среды.

Металл, стойкий к коррозии в одних условиях, может разрушаться в других.

Так, например, алюминий стоек к коррозии, вызываемой жидким топливом, и не стоек к действию натриевой щелочи (так называемое явление пассивности и активности).

 Окись алюминия создает химически инертный защитный слой, толщина которого составляет 20—100Å.

Алюминий, поверхность которого очищена от защитной пленки, может реагировать с водой, выделяя при этом водород. Под влиянием окислителей поверхность алюминия пассивируется, поэтому кислород, содержащийся в воздухе или растворенный в воде, повышает его коррозионную стойкость.

Коррозионная стойкость алюминия в значительной степени зависит от содержания примесей других металлов.

Как известно, при контакте двух металлов, погруженных в среду электролита, образуется гальваническая пара, где более активный металл становится анодом, а менее активный — катодом.

В результате электрохимической реакции анод разрушается. Большинство примесей (за исключением металлов, более активных, чем алюминий) играют роль катода по отношению к алюминию, т.е.

способствуют его разрушению.

 По этой причине алюминий высокой чистоты отличается более высокой коррозионной стойкостью, чем технический металл, который, в свою очередь, более устойчив к коррозии, чем сплавы алюминия. Кроме того, коррозионная стойкость алюминия зависит от характеристик окружающей среды и от реакций, вызываемых этой средой в алюминии.

Механизм коррозии алюминия

В присутствии окислителей поверхность алюминия покрывается защитным слоем окиси алюминия. Защитный слой, в свою очередь, состоит из двух слоев:

  • Внутреннего слоя Al2O3, который образуется при непосредственной реакции кислорода с металлом. Внутренний слой оксида прочно прилегает к металлу основы, а его структура и толщина зависят от температуры окисления.
  • Наружного, образующегося в результате реакции внутреннего слоя с внешней средой, в основном, с водой. Толщина этого слоя зависит от времени протекания коррозии и концентрации агрессивных веществ в окружающей среде. Увеличение толщины наружного слоя происходит за счет окисления металла основы. Наружный слой порист, он пропускает воздух и влагу.
  • В результате коррозионных процессов на поверхности алюминия общая толщина защитного слоя увеличивается, но толщина внутреннего слоя при этом остается постоянной. 

Виды коррозии

Коррозию металлов можно разделить на химическую и электрохимическую.

Электрохимическая коррозия происходит при действии на металл растворов электролитов (т.е.

растворов, содержащих носители электрического тока — ионы) и сопровождается возникновением электрического тока.

 Химическая коррозия происходит при воздействии на металл сухих газов, пыли, жидких веществ (не электролитов) и не сопровождается возникновением электрического тока.

 Разрушающее действие коррозии всегда начинается с поверхности металла.

Затем коррозия распространяется в глубину со скоростью, зависящей от вида металла или сплава, его состава, структуры, характеристик, а также состава и характеристик окружающей среды.

Этому процессу чаще всего сопутствуют изменения внешнего вида поверхности: она становится матовой, изменяет цвет, появляются точки, пятна, вздутия и т. д. В результате взаимодействия алюминия с окружающей средой образуются вещества (продукты коррозии), свойства которых в значительной мере влияют на протекание коррозионных процессов. Рассмотрим возможные разновидности такого влияния:

  • В процессе коррозии образуются летучие или растворимые вещества, которые легко и быстро удаляются с места реакции и не препятствуют распространению коррозии. В результате реакция проходит по всей поверхности металла, доступной для коррозионного воздействия, и без помех распространяется в глубину.
  • На поверхности металла возникают тонкие, прозрачные, прочно связанные с металлом слои, которые перекрывают доступ агрессивного реагента к металлу основы. Эти слои являются причиной так называемой «пассивации» поверхности. С образованием такого слоя коррозия практически полностью останавливается, а остаточные процессы происходят только на наружной поверхности слоя, который может частично растворяться в агрессивной среде.
  • Неоднородность поверхностного слоя приводит к проявлению неравномерной или местной коррозии. Слой продуктов коррозии неравномерно распределяется по всей поверхности корродирующего металла.
Читайте также  Как припаять к алюминию олово

В зависимости от свойств продуктов коррозии можно выделить следующие разновидности последней:

  • Локальная коррозия в виде пятен на поверхности металла.
  • Локальная коррозия в виде разъеданий, которая возникает в случае, если процесс происходит на поверхности малой площади и интенсивно распространяется вглубь металла.
  • Межкристаллическая коррозия, возникающая в случае, если агрессивное вещество поступает вглубь металла и разрушает внешние границы кристаллов (зерен), из которых состоит сплав. Продукты коррозии остаются внутри металла, причем на наружной поверхности не происходит никаких заметных изменений. Это особенно опасный вид коррозии с точки зрения скорости процесса. В этом случае материал, создающий границу зерен, выполняет роль анода по отношению к зернам, которые занимают значительную площадь и действуют, как катод.
  • Коррозия напряжения и ее разновидность — коррозия усталости, возникающая в случае, если, помимо воздействия коррозионной среды, изделие из металла подвергается постоянным или переменным нагрузкам.
  • Селективная (избирательная) коррозия, во время которой одна или несколько составных частей сплава подвергается коррозии, а пористая основа сплава сохраняет первоначальную форму изделия.

Электрохимическая коррозия

В техническом алюминии (или в его сплавах) содержатся примеси металлов в виде отдельных вкраплений (магний, титан, железо, марганец и др.

) Благодаря наличию таких вкраплений сплав, погруженный в электролит, представляет собой совокупность большого количества микроскопических гальванических очагов.

В результате электрохимической реакции, возникающей в этих очагах, металл, выступающий в роли анода (а в нашем случае это основной компонент сплава, алюминий), растворяется, в то время как на микрокатодах выделяется водород.Такие микроисточники коррозии по своей природе являются обычными гальваническими элементами и отличаются:

  • 1 микроскопическими размерами анода и катода;
  • 2 горизонтальным расположением электродов;
  • 3 прямым соединением катода и анода.

Процесс электрохимической коррозии не всегда является результатом возникновения микроскопических гальванических элементов.

В ряде случаев очаги коррозии имеют «видимые» (макроскопические) размеры.

 Механизм электромеханического коррозионного разрушения для разной величины поверхности катода (сталь) и анода (алюминий) представлен на рис. 3.

Атмосферная коррозия

Атмосферной коррозией называют процесс разрушения металлов на воздухе в результате происходящих на их поверхности химических и электрохимических реакций. Это наиболее распространенный пример разрушения металлов.

Основной причиной атмосферной коррозии является тонкий слой влаги, который образуется на поверхности металла, если его температура находится ниже точки росы.

С понижением температуры или при увеличении содержания водяного пара в воздухе излишек пара оседает в виде капель воды.

 Если поверхность негладкая, покрыта пылью и слоями продуктов коррозии, то значительно раньше достижения точки росы во всех углублениях, порах и трещинах конденсируется пар и образуется слой воды.

 Некоторые газообразные вещества, содержащиеся в атмосфере, такие как оксиды азота, серы, хлорид водорода и другие, растворяются в конденсированной влаге, образуя кислоты.

Поскольку растворимость этих веществ в воде очень высока, они концентрируются в слое воды даже тогда, когда их содержание в воздухе сравнительно невелико. Скорость коррозии зависит как от характеристик коррозионной среды (внешних факторов), так и от характера самого металла (внутренних факторов).

К внешним факторам относятся:

  • состав среды;
  • температура;
  • давление;
  • ветровые нагрузки;
  • блуждающие токи.

К внутренним факторам относятся:

  • химический состав сплава;
  • структура металла;
  • внутренние напряжения.

Влияние атмосферы на процесс коррозии зависит от климатической зоны, уровня развития промышленности в регионе и загрязненности атмосферы.

Наиболее существенными факторами, определяющими коррозионные свойства атмосферы, являются содержание пыли, газов, влажность и температура.

 Влиянием этих факторов объясняется различная скорость процесса коррозии в различных точках земного шара.

Например, чем ближе к морю, тем больше в воздухе морских солей, ускоряющих коррозию, особенно NaCl. В регионах, где много промышленных объектов, в воздухе много таких соединений, как SO2.

 Отметим, что скорость коррозии на воздухе, как правило, значительно ниже, чем в пресной воде или почве. Атмосферную коррозию можно разделить на сухую, влажную и морскую.

 Сухая (газовая) атмосферная коррозия проходит в условиях полного отсутствия влаги на поверхности металла. Этот вид коррозии протекает очень медленно. Если в атмосфере содержатся агрессивные газы, то скорость коррозии значительно ускоряется. 

Влажная атмосферная коррозия протекает в слое электролита малой толщины.

Скорость процесса зависит от влажности воздуха, атмосферных загрязнений и гигроскопичности продуктов коррозии: если эти вещества задерживают влагу на поверхности металла, скорость коррозии возрастает.

Морская атмосферная коррозия. В регионах с морским климатом в состав атмосферы входит большое количество солей, на поверхности металла собираются капли морской воды, соли и другие загрязнения, ускоряющие коррозию.

Взаимодействие алюминия и его сплавов с другими металлами и сплавами

В среде электролита два различных металла, соприкасающиеся между собой или соединенные проводником, образуют гальванический элемент, в котором генерируется электрический ток.

Направление движения электронов в гальваническом элементе определяется величинами электродных потенциалов металлов, Интенсивность коррозии, возникающей при соединении двух металлов, зависит от их расположения в ряду напряжений (разности потенциалов), от соотношения площади поверхности и уровня их поляризации. Чем больше разность потенциалов в гальваническом элементе, тем выше напряжение и тем интенсивнее разрушается анод. Значения потенциалов, приведенные в электрохимическом ряде напряжений, определены для стандартных условий (температура 25°С и единичная активность ионов в растворе электролита). Нужно учитывать, что в зависимости от состава электролита эти значения могут меняться. Так, например, в щелочных растворах алюминий корродирует значительно сильнее, чем в кислых. Цинк, потенциал которого близок к потенциалу алюминия, может использоваться для непосредственного контакта с алюминием. Если такой контакт происходит в нейтральных и кислых средах, цинк выполняет функцию анода и поэтому защищает катодный алюминий от коррозии. Однако в щелочных средах, наоборот, активность алюминия возрастает, поэтому цинк ускоряет коррозию алюминия. При контакте стальных оцинкованных деталей (шурупов и т.д.) с алюминием слой цинка вначале обеспечивает защиту алюминия, но после стирания цинка стальная поверхность становится открытой, что может привести к коррозии алюминия. В контакте с алюминием рекомендуется применение стали, оцинкованной горячим методом, поскольку в этом случае толщина покрытия больше, чем при электролитической оцинковке.

Ни в коем случае алюминий не должен соединяться с медью и ее сплавами, поскольку это приводит к быстрой коррозии алюминия (так называемой «катастрофической коррозии»). В связи с этим в алюминиевых конструкциях недопустимы всякого рода элементы и дополнения из меди. По этой же причине не следует допускать влияния на алюминий дождевой воды, которая стекает с медных крыш и труб непосредственно на алюминиевые конструкции, даже тогда, когда она содержит небольшие количества ионов меди.

Следует также избегать контакта с оловом и его соединениями, особенно в атмосфере, загрязненной промышленными отходами. Соли олова, образующиеся в кислой среде, сильно разрушают поверхность алюминия.

Свинцовый сурик, при наличии влаги, содержащей кислоту, проявляет сильную коррозионную активность. Поэтому при контакте с алюминием следует избегать стальных элементов, покрытых свинцовым суриком.

Ртуть и ее соли уже в присутствии следов влаги вызывают сильную коррозию алюминия.

В этом случае процесс коррозии усиливается благодаря образованию амальгамы: амальгамированный алюминий интенсивно взаимодействует с водой в даже отсутствие кислот и щелочей! Поэтому при складировании алюминиевых профилей даже пары ртути (из разбитой лампочки) могут привести к мгновенной коррозии.Соединение алюминия и стали допустимо в сельской местности, но на приморских и промышленных территориях сталь ускоряет коррозию алюминия. Поэтому при контакте стали и алюминия необходимо избегать их непосредственного контакта, например, путем оцинковки стали, покраски алюминия с одновременным использованием изолирующих прокладок из синтетических материалов. При соединении железа, никеля и хрома с алюминием возникает значительная разность потенциалов, поэтому их не следует соединять непосредственно друг с другом. Кроме того, соли этих металлов (хлориды, сульфаты и т. д.), которые образуются в результате их коррозии, также способствуют разрушению алюминия.

Процесс химической коррозии протекает при воздействии сухих газов, жидких неэлектролитов и других материалов (в том числе и строительных) на алюминий

В результате химической коррозии на поверхности алюминия образуется защитный слой, состоящий из продуктов коррозии и препятствующий взаимодействию агрессивных веществ с металлом. Скорость и вид химической коррозии определяет процесс диффузии агрессивного вещества через защитный слой. Как мы упоминали ранее, слой окиси алюминия возникает на поверхности в результате окисления металла кислородом воздуха. На воздухе в отсутствие влаги толщина этого слоя в течение нескольких минут достигает 10 Å.

Читайте также  Окислился алюминий что делать

Источник: http://moemfasad.at.ua/publ/poleznaja_informacija/korrozija_aljuminija/1-1-0-10

Вредна ли алюминиевая посуда и в чем ее вред

Раньше вельможи ели из алюминиевой посуды и преподносили друг другу дары в виде столовых приборов из этого лёгкого металла.

Спустя время этот элемент периодической таблицы научились добывать в достаточных количествах и его себестоимость постепенно снизилась.

Так как предметы кухонной утвари из алюминия остались на полках магазинов, ученные захотели выяснить, вредна ли алюминиевая посуда для человеческого организма.

Что такое алюминий

Алюминий – это лёгкий металл, который отлично поддаётся литью и механической обработке.

Он податлив, хорошо проводит тепло и не покрывается ржавчиной, так как на поверхности алюминиевого изделия образуется оксидная плёнка.

В былые времена алюминий являлся очень ценным металлом. Надеть на себя украшения из этого лёгкого серебристо-белого металла могли позволить только богатые люди.

Сейчас же он используется в пищевой промышленности для производства посуды и фольги для запекания.

Он издавна популярен в авиапромышленности, строительстве, теплотехнике, так как лёгкий и не поддаётся окислению.

Вред алюминия для человека

Вокруг алюминия в последнее время витает много противоречивой информации.

Одни твердят, что, накапливаясь в организме, он разрушает нервную систему, другие, что он вызывает болезнь Альцгеймера.

Однако имеет ли это отношение к алюминиевой посуде?

Алюминий и вправду токсичен для человека в больших количествах.

Опасным для здоровья считается попадание в организм более 50 мг этого металла за сутки.

Чем же так не угодила посуда? СМИ распространили информацию, что этот серебристо-белый металл:

  • уничтожает нервные клетки;
  • приводит к болезни Альцгеймера;
  • разрушает мозг и ухудшает его деятельность;
  • способствует росту новообразований;
  • приводит к дисфункции почек;
  • ухудшает обмен витаминов и минералов;
  • тормозит выработку гемоглобина.

В 70-х годах прошлого столетия в Канаде проводились опыты, нацеленные обнаружить причину возникновения болезни Альцгеймера.

Исследователи начали бить тревогу, так как у всех больных этим недугом выявили повышенное содержание алюминия в сравнении со здоровым человеком.

Однако учёные так и не смогли установить связь между этим фактом и этиологией возникновения этого тяжёлого заболевания.

Природа сенильной деменции этого типа так и не выявлена по сей день, но одно известно наверняка – алюминиевая посуда никак не способствует проявлению этого заболевания.

Это и ещё многое другое приписывают этому природному металлу. Нельзя сказать, что эти обвинения беспочвенны – избыток любого вещества в организме приводит к сбоям. Но, позвольте заметить, что посуда тут совсем ни при чём.

Можно ли использовать алюминиевую посуду

Наши бабушки и дедушки не имели возможности принимать пищу из красивой посуды из нержавеющей стали с позолотой.

Даже мельхиоровые столовые приборы были на вес золота.

Тем не менее старшее поколение, которое пользовалось алюминиевой посудой, в большинстве своём здоровее и крепче нынешней молодёжи.

Дело в том, что даже если приготовить пищу в алюминиевой кастрюле, переложить её в алюминиевую миску, поесть из неё алюминиевой ложкой, а потом запить всё это из алюминиевой кружки, в организм не поступит более чем 2 мг алюминия. Это вполне нормальный показатель – такое количество этого вещества никак не повлияет на жизнедеятельность и здоровье человека.

Кроме того, малые дозы алюминия нужны человеку для восстановления костной ткани, регенерации эпителия, регуляции выделения пищевых ферментов.

Он содержится в водопроводной воде, так как она проходит очистку сульфатом алюминия, в сухих антиперспирантах и даже в лекарственных препаратах, например, в Аспирине.

К тому же имея здоровые почки, можно не опасаться высокой концентрации алюминия в организме – он быстро выводится мочевыделительной системой.

Правда о посуде из алюминия

Теперь стоило бы упомянуть о правдивой информации, связанной с посудой из лёгкого серебристо-белого металла. Используя алюминиевые кастрюли, сковороды и столовые приборы, помните:

  1. Посуда из алюминия вступает в реакцию с кислотами. Например, если вы наливаете в ложку уксус или лимонный сок, то выделится небольшое количество металла, который впоследствии попадёт в пищу. На самом деле, даже при самой активной реакции, более чем 3 г из посуды вытравить невозможно, поэтому вреда здоровью это не принесёт.
  2. Приготовленную пищу лучше не хранить в алюминиевой посуде. Это правда, так как вкусовые качества блюд могут измениться, к тому же алюминий периодически будет выделяться и вступать в реакцию с приготовленной едой. Опять же, вреда от этого не будет, но вкус пищи может измениться.
  3. Не нужно усердно тереть алюминиевые кастрюли и сковороды металлической губкой. Во-первых, поцарапается поверхность и внешний вид предмета кухонной утвари испортится, а во-вторых, сотрётся защитный слой, предупреждающий появление ржавчины.

Предложения современных производителей

Если есть опасения по поводу того, что алюминиевая посуда вступает в реакцию с пищей, то полезным будет узнать, что современные производители решили проблему окисления и вышли из положения двумя способами:

  • защита от окисления с помощью специальной обработки, вследствие которой получают анодированный алюминий;
  • заключение алюминия в нержавеющую сталь. Такая многослойная посуда более лёгкая и не менее долговечная, чем из других дорогостоящих сплавов.

Таким образом, можно приобрести красивую и абсолютно безвредную посуду по хорошей цене. Единственный момент – лучше отдавать предпочтение литым изделиям. Штампованные прослужат меньше.

Достоинства и недостатки алюминиевой посуды

Итак, то, что алюминиевая посуда не может нанести вред человеческому здоровью – это факт. Чем же она так хороша, а какие её характеристики оставляют желать лучшего?

  1. Она очень лёгкая. Это ценное свойство, особенно если нужно взять с собой столовые приборы и кружку в поездку или алюминиевый котелок в поход. Она настолько легковесна, что почти не утяжеляет ношу.
  2. Она быстро нагревается. За счёт того, что посуда из алюминия очень тонкая, вода в неё закипает гораздо быстрее, чем в новомодных кастрюлях с толстым семислойным дном.
  3. Она не покрывается ржавчиной. Купив набор такой посуды не нужно гадать, окислится она или нет. Дело в том, что при первом контакте с кислородом на поверхности этого лёгкого металла образуется оксидная плёнка, которая защищает его от ржавчины. Это большой плюс, так как при покупке дешёвой многослойной посуды из нержавеющей стали можно напороться на китайскую подделку, которая со временем покроется ржавчиной. За эти деньги лучше приобрести алюминиевый набор.

Теперь нужно упомянуть и о недостатках кухонной утвари из серебристо-белого металла. Среди них:

  • такая посуда легко поддаётся деформации;
  • при длительном использовании она истирается, особенно это касается днища кастрюль и сотейников. После этого пища начинает неравномерно нагреваться и может пригорать;
  • она темнеет и весьма недолговечна, со временем такая утварь может настолько поизноситься, что стирается до дыр.

Чтобы пользоваться такой посудой долго, достаточно выбрать набор с многослойным покрытием – тогда износ не страшен.

Дети обожают алюминиевые ложки, так как они удобные и лёгкие, а это то, что нужно, чтобы учиться кушать без помощи взрослых.

Алюминиевая посуда окисляется, в ней лучше не оставлять готовую пищу и не мыть её жёсткими губками.

Она безопасна для здоровья, так как количество алюминия, что выделяется из неё при реакции с кислыми продуктами, ничтожно мало.

Зато она удобная и лёгкая, быстро нагревается на плите. Сегодня выбор такой посуды очень велик, а цены на неё остаются доступными.

Источник: https://otravlenye.ru/polza-i-vred/predmety/opasno-li-polzovatsya-alyuminievoj-posudoj.html

Степень окисления и физические свойства алюминия

Степень окисления алюминия характеризует валентность химического элемента, отражает его способность образовывать соединения.

Это свойство учитывается при разведке месторождений руд, богатых на ценный компонент, технологии их обогащения, очистки от примесей второстепенных соединений и применении в разных отраслях производства.

Окисление алюминия влияет на его использование в производстве

Физические и химические параметры элемента

Алюминий — химический элемент с атомным номером 13, представляющий собой металл серебристо-белого цвета.

Его название происходит от латинского слова alumen — квасцы.

Практически во всех соединениях химический элемент проявляет валентность 3.

  • Кристаллизация химического элемента происходит в кубической гранецентрированной решетке. Металл может окисляться при комнатной температуре. При этом его поверхность покрывается тонкой оксидной пленкой, выполняющей защитную функцию.
  • Температура плавления химически чистого алюминия 660 °C, кипения — 2450 °C. Плотность металла при нормальных условиях составляет 2,6989 г/см3.
  • На воздухе алюминий окисляется с образованием тонкой пленки, которая препятствует дальнейшему реагированию с металлом. Такое защитное соединение формируется, если поместить алюминий в концентрат азотной кислоты.
  • Металл активно взаимодействует с соляной кислотой. При реакции со щелочами сначала разрушается защитный оксидированный слой, а затем происходит реакция с образованием алюминатов натрия, калия (в зависимости от вида щелочного соединения).
  • При нагревании химический элемент реагирует с бромом и хлором. При взаимодействии с серой образуется сульфид алюминия, который легко растворяется в воде. С водородом металл реагирует косвенно путем искусственного синтеза органических соединений. В результате образуется сильнейший восстановитель — полимерный гидрид алюминия.
  • При сжигании порошкообразного металла на воздухе образуется тугоплавкий порошок оксида химического элемента, соединение которого обладает высокой прочностью. Это свойство используется для восстановления металлов из их окислов.
  • В лабораторных условиях соединения алюминия, содержащие гидроксильную группу OH, можно получить в результате обменных реакций или за счет добавления в раствор соды или аммиака. Соединение алюминия оседает на дно в виде гелеобразного осадка.
Читайте также  Твердое анодирование алюминия

Технологии извлечения алюминия

Химический элемент № 13 является самым распространенным в природе, его содержание в земной коре составляет около 9%. Металл входит в состав более 250 минералов, главным образом, алюмосиликатов, из которых состоит земная кора.

Продуктом разрушения образований является глина, состоящая из каолинита. В ней иногда содержится примесь железа, придающая бурый цвет.

Несмотря на то, что в природе существует много минеральных образований, не все они являются рудным материалом для извлечения ценного компонента. Для добычи используют бокситовые руды, в которых содержится промышленная концентрация металла.

Алюминий образует минерал корунд, по твердости уступающий алмазу. в алюминиевом соединении Al2O3 примеси оксида хрома, титана и железа формирует драгоценные минералы рубин и сапфир.

  • Из обогащенной руды ценный компонент извлекают путем электролиза раствора оксида в расплавленном соединении фтора, натрия и алюминия (криолите). Такой способ позволяет проводить электролиз при температуре менее 1000 °C.
  • Благодаря низкой плотности расплава, жидкое соединение опускается на дно, что облегчает извлечение. При электролитическом получении металла для начала из глинозема выделяют чистый оксид Al2O3.
  • Перед использованием руду очищают от примесей соединений железа, кремния, кальция. При обжиге бокситов испаряется содержащаяся в минералах вода. Полученный материал разделяют при воздействии углекислого газа на соединение.

Широко применяется в производстве чистого алюминия химический способ.

Он состоит в обработке руды щелочью NaOH при температуре 220 °C с получением Al (OH)2.

В результате гидролиза раствора происходит окисление алюминия и осаждение его соединения.

Производят алюминий химическим способом

Потом в результате использования углекислого газа получают соду и поташ.

Для получения химически чистого материала технический материал нагревают в парах AlF3 с последующим охлаждением.

В результате изменения температуры происходит выделение чистого алюминия.

Производство металла высокой чистоты предусматривают разработку новых технологий и создание условий, при которых металл может оксидировать без дополнительных затрат энергии.

Один из новых методов предусматривает синтез оксида алюминия высокой чистоты методом каталитического окисления металла кислородом воды с применением ультразвуковых колебаний, разработку автокаталитического способа получения субмикронного порошка с последующим формирование брикет высокой плотности.

Сферы использования металла и его соединений

Значительное количество алюминия находится в фарфоре, кирпиче, цементе.

По масштабам использования сплавы металла уступают место железу.

Широкое применение алюминиевых материалов в различных отраслях связано с рядом физических и химических параметров:

  • невысокая плотность;
  • металл не ржавеет, обладает устойчивостью к коррозии;
  • имеет высокую электропроводность;
  • легко поддается штамповке, прокату и обладает ковкостью;
  • пластичен и прочен;
  • на поверхности алюминиевых сплавов легко наносятся декоративные и защитные покрытия.

При добавлении разных лигатурных компонентов сплавы на основе алюминия приобретают новые свойства, формируя интерметаллические соединения или твердые растворы.

Не все материалы способны образовывать оксидные пленки даже принудительно. Для сохранения антикоррозионных свойств материала кислотно-щелочной баланс должен соответствовать диапазону от 6 до 8 единиц.

Чистый алюминий практически не подвергается воздействию агрессивной среды. Даже тонкое покрытие поверхности металлом без примесей способно предотвратить реакцию.

Основную массу металла используют для получения легких сплавов:

  • дюралюминия, в котором находится 94% алюминия, 4% меди, по 0,5% железа, марганца, кремния и магния;
  • силумина — до 90% основа, до 14% кремний и натрий.Легкие сплавы — дюралюминий и силумин

В металлургии химический элемент используют в качестве лигатурной добавки в составы на основе меди, никеля, железа, магния. Такие соединения широко применяются в автомобилестроении, в быту, авиационной технике.

Из сплава с основным содержанием алюминия был изготовлен первый искусственный спутник планеты Земля.

В виде порошка его используют как компонент ракетного топлива. Эта идея принадлежит Ф. А. Цандеру.

Сплав металла с цирконием используют в строительстве ядерных реакторов, изготовлении взрывчатых материалов.

Электрохимическим способом на поверхности ювелирной бижутерии наносят защитные окрашенные пленки, по внешнему виду напоминающие золото. Сплав алюминия с золотом, обладающий насыщенным фиолетовым цветом, используют в качестве вставок в украшения.

При обращении с металлом в домашних условиях нужно соблюдать правила эксплуатации посуды из алюминия. Чтобы продукты не окислились, то их стоит хранить в эмалированной или стеклянной посуде.

Готовить в посуде из алюминия можно нейтральные жидкости, например, воду или молоко. Кислые блюда реагируют с металлом и приобретают неприятный вкус в результате разрушения оксидной пленки.

Металл можно расплавить в домашних условиях с целью изготовления различных деталей методом литья.

В промышленном производстве в качестве материала для форм используют металл с высшей температурой плавления, а в кустарных условиях для этой цели применяют гипс.

Источник: https://ometallah.com/poleznoe/stepen-okisleniya-alyuminiya.html

Как защитить алюминий от коррозии и окисления: все способы

Алюминий – металл с большой реакционной способностью, окисляется при нормальных условиях в окружении кислорода.

Алюминий – металл с большой реакционной способностью, окисляется при нормальных условиях в окружении кислорода.

В обычном состоянии алюминиевые изделия покрыты оксидной пленкой, которая немного защищает металл.

Спонтанно образовавшийся оксид алюминия покрывает поверхность неравномерно, сцепление с субстратом не всегда прочное. Защищенность металла самопроизвольно сформированным покрытием из оксида ненадёжна.

Коррозию алюминия инициируют кислород, влага. Катализируют процесс агрессивные среды, присутствие рядом некоторых металлов, материалов.

Защита алюминия от коррозии сводится к нивелированию действия инициирующих, катализирующих влияний.

Нейтрализовать внешнюю агрессию можно следующими методами:

  • формированием на поверхности специального покрытия из целенаправленно полученного оксида;
  • окрашиванием внешнего слоя.

Анодное оксидирование алюминия

Реакцию образования экранирующего слоя можно проводить электрохимически. Процесс реализуют поэтапно.

Подготовка к анодированию. Изделие очищают от жирового налета погружением в раствор щавелевой кислоты. Затем промывают водой, окунают в раствор щёлочи для удаления слоя оксидов, неравномерно образовавшегося ранее.

Материал погружают в электролитический раствор сульфатной (серной) кислоты строго обозначенной плотности.

В международной литературе эту кислоту называют дигидрогенсульфатом. Алюминиевый объект подключают к положительному полюсу источника электроэнергии.

Поэтому процесс называют анодным. Катод сделан из свинца. Через рабочий раствор начинают пропускать ток определенной плотности при указанном напряжении.

Огромное значение на плотность и цвет оксидного покрытия оказывает температура раствора.

Пониженная температура способствует образованию плотной пленки красивого насыщенного цвета.

Повышенная температура приводит к формированию рыхлой бесцветной пленки, требующей последующего окрашивания. Охлаждение рабочей ванны – процесс энергоемкий.

Решение о режиме проведения оксидирование принимают, основываясь на полученное техническое задание.

Для получения дополнительного окрашивания конструкцию можно погружать в подобранные растворы солей.

Сформировавшееся покрытие в большем или меньшем количестве содержит поры.

Для их закупоривания алюминиевый материал подвергают действию паров или кипящих растворов воды.

Завершает обработку просушивание материала, его упаковка.

В некоторых технологиях в качестве рабочего электролита используют вместо серной кислоты хромовокислый или щавелевокислый растворы. Согласно статистике в мире таким методом защищают меньшую часть алюминиевых конструкций.

Окрашивание алюминиевой продукции

Большую часть производимых изделий предохраняют нанесением слоя красящих веществ. Если красители растворены, то крашение называют мокрым. Если красители сухие, процедуру часто называют порошковым окрашиванием.

Мокрое окрашивание

Нанесение лакокрасочных слоёв возможно после защиты алюминия пассивирующим грунтом, в состав которых входят соединений цинка, стронция.

Грунт наносят в две стадии на скрупулезно подготовленную металлическую основу.

После полного испарения растворителя из грунтовочной смеси поверхность покрывают изолирующим внешним слоем масляного или глифталевого лака.

Существуют функциональные лакокрасочные составы, защищающие от химических реагентов, от бензина, масел. Для получения цветных декоративных конструкций используют молотковые лаки.

При некоторых технологиях защиты наносят бакелитовый лак под давлением, чтобы гарантированно заполнить все микропоры. Выбор покрытия обусловлен будущими условиями эксплуатации. Технология нанесения постоянно совершенствуется.

Порошковое окрашивание

Для использования этого метода металл также нужно очистить от слоя жира, других включений.

Подготовку проводят погружением в щелочные, слабощелочные (почти нейтральные), кислотные растворы.

Для повышения эффективности очистки иногда добавляют смачиватели.

Следующей стадией подготовки некоторых алюминиевых конструкций является формирование конверсионного слоя обработкой хроматными, фосфатными составами. Иногда используют циркониевые, титановые соединения.

Необходимость этого этапа определяется специфическими особенностями изделия. Это вопрос компетенции технологов. Выполнение каждого этапа обработки чередуется с обязательным промыванием и сушкой материала.

Затем наносят полимер, выполняющий защитную функцию. Широко используют полиэфиры.

Они образуют плотный слой, стойкий к химическому, механическому, термическому воздействию. Покрытия из полимеризованного уретана обладают большей твердостью.

Применяют также эпоксидные, полиэфирно-эпоксидные, акриловые порошки – краски.

Они формируют поверхность любого заданного цвета, структуры, способностью отражать световые лучи. Красящий порошок наносят электростатическим или трибостатическим методом.

Электростатически частицы пигмента в воздухе (флюиды) заряжают действием электродов.

Трибостатически крупинки краски заряжаются благодаря силе трения, продуцируемой специальным пистолетом. Процесс реализуют в камерах.

Неиспользованный порошок собирается, возвращается в исходное место. Стадия завершается полимеризацией при высокой температуре.

Оба вида окрашивания алюминия позволяют получать цвета, соответствующие международным стандартам.

Некоторые производственные требования обуславливают необходимость последовательного сочетания двух методов: анодного оксидирования и окрашивания.

Количество, суть используемых методов определяются специалистами.

Нивелирование влияния соседствующих материалов

Стимулировать коррозию алюминия могут металлы, материалы, находящиеся рядом. Для предотвращения этого эффекта рядом с алюминиевыми конструкциями позволительно нахождение только нержавеющей или оцинкованной стали.

Могут предотвратить контакт прокладки из резины, паронита, битума. Алюминиевые конструкции не должны соприкасаться с бетоном, кирпичом, камнем, деревом. Для защиты рекомендован лак, любые другие изолирующие материалы.

Источник: http://www.technoflax.com/kak-zashhitit-alyuminij-ot-korrozii-i-okisleniya-vse-sposoby.html

Понравилась статья? Поделить с друзьями: